FALK SYMPOSIUM 43

Modulation of Liver Cell **Expression**

FDITFD BY

W. Reutter

Institute of Molecular Biology and Biochemistry, Free University of Berlin Berlin, West Germany

P. C. Heinrich

Institute of Biochemistry University of Freiburg-im-Breisgau, West Germany

H. Popper

Mount Sinai School of Medicine of the City University of New York, USA

D. Keppler

Institute of Biochemistry, University of Freiburg-im-Breisgau, West Germany

I. M. Arias

Physiology Department, Tufts University School of Medicine. Boston, Maryland, USA

L. Landmann

Institute of Biochemistry Basel University Switzerland

Proceedings of the 43rd Falk Symposium, held during Basel Liver Week, Basel, October 14 and 15, 1986

K. Moelling, B. Heimann, H. Bading, M. Häder, G. Bepler, Regulation of specific gene expression in liver during

CONTENTS

Part 4 Cellular Oncogenes and their Products

Proteins of oncogenes in human tumour cells

Cis- and trans-acting factors in liver cells M. A. Sells, S. Karpen, H. Popper, F. Hoppe-Seyler, M. Shvartsman, P. M. Price and G. Acs Strongly conserved segment of gene expression in cancer

K. Havemann and C. Beutler

development, growth, regeneration and fibrosis A. Panduro, F. Shalaby, L. Biempica and D. A. Shafritz 24 cells G. Weber Role of class I antigens of the major histocompatibility complex in tumorigenicity

25 26 K. J. Isselbacher, K. Tanaka, H. Hayashi, G. Khoury and G. Jay

22

23

SECTION II ACUTE PHASE RESPONSE AND INFLAMMATORY MEDIATORS

27 cytokines involved in their induced synthesis A. Koi

28

primary cultures 29 Structure and acute-phase regulation of rat liver α-macroalobulins T. Braciak, G. Hudson and H. Ueberberg

32

33

30 31 response

Production of HSF in a murine macrophage cell line

sinusoidal cells

K. Decker

G. M. Fuller, J. E. Nesbitt and R. J. Bunzel Biochemistry of the liver cell nucleus during the acute-phase

hepatoma Hep3B cells

A. Bernelli-Zazzera

S. Oliviero, G. Morrone and R. Cortese

Eicosanoids as signal molecules between hepatocytes and

vii

Transcriptional activation of the haptoglobin gene in human

G. H. Fey, W. Northemann, B. R. Shiels, M. R. Gehring,

T. Geiger, T. Andus, D. Kunz, M. Heisig, H. Northoff, J. Bauer, T.-A. Tran-Thi, K. Decker and P. C. Heinrich

Induction of acute-phase protein synthesis: studies on the regulation of rat α2-macroglobulin in vivo and in hepatocyte

Biological functions of acute-phase proteins and the

275

287

299

303

315

331

343

357

371

383

391

397

28

Induction of acute-phase protein synthesis: studies on the regulation of rat α_2 -macroglobulin *in vivo* and in hepatocyte primary cultures

T. GEIGER, T. ANDUS, D. KUNZ, M. HEISIG, H. NORTHOFF, J. BAUER, T.-A. TRAN-THI, K. DECKER AND P. C. HEINRICH

INTRODUCTION

Acute inflammation leads to the increased synthesis of an ensemble of proteins designated as acute-phase proteins¹⁻³. The major site of synthesis for these proteins is the liver. Many of the acute-phase proteins are proteinase inhibitors. We study acute-phase protein synthesis in the rat and are interested in

Table 1 The α_2 -macroglobulin family

Species	Protein	Concentration (mg/ml)		Molecular weight of	Number of	Carbohydrate content
		Normal plasma	AP-plasma	subunits(s)	subunits	%
Rat	$\alpha_1 M$	3.8	3.9	168 000 38 000	8 (?)	15
	$\alpha_2 \mathbf{M}$	< 0.02	2.0	182 000	4	15.9
Human	$\alpha_1 I_3$	6.0	2.1	186 000	1	15
	$\alpha_2 \mathbf{M}$	2–4	2-4	179 000	4	10.2
	PZP	< 0.01	1-1.4	180 000	4	10-12

a family of high molecular weight proteinase inhibitors, the α -macroglobulins. Table 1 shows the three members of the rat α -macroglobulin family: α_1 -macroglobulin, α_2 -macroglobulin and α_1 -inhibitor III. Although all three proteins are proteinase inhibitors, their regulation is different. Whereas α_1 -